ADAG GATEME

USN		17ELN15/2
	Fir	st/Second Semester B.E. Degree Examination, Dec.2018/Jan.2019
		Basic Electronics
Tin	1 0 • 1	hrs. Max. Marks: 10
1 111	10	Note: Answer any FIVE full questions, choosing
		ONE full question from each module.
		Module-1
1	a.	Explain the operation of PN junction diode under forward and reverse bias condition.
		(07 Mark
	b.	Discuss the load and line regulations using zener diode with neat circuit diagrams at
	c.	appropriate expressions. (08 Mark Design a 9V DC reference source consisting of a zener diode and series connected resistor
	С.	operate from a 24V supply. $[I_{ZT} = I_Z = 20 \text{ mA}]$. (05 Mark
		operate from a 217 suppry. [12] 12 25 in 4.
		ØR .
2	a.	With a neat circuit diagram, explain the operation of centre tapped full wave rectifier. Dra
		input and output waveforms. (07 Mark
	b.	Draw common emitter circuit, sketch input and output characteristics and explain thr
		regions of operation. (08 Mark
	c.	Derive the relationship between α and β . Find I_C and I_E for the transistor with $\alpha=0.99$ at
		$I_B = 20\mu A$. (05 Mark
		Module-2
3	a.	Precisely analyse the circuit of voltage divider bias. (08 Mark What is Op-Amp? List out the ideal and particle characteristics of Op-Amp. (07 Mark)
	b. c.	What is Op-Amp? List out the ideal and particle characteristics of Op-Amp. (07 Mark Calculate the output voltage of a summer. Given: $R_1 = 200k\Omega$, $R_2 = 250k\Omega$, $R_3 = 500k\Omega$
	٥.	$R_f = 1M\Omega$, $V_1 = -2V$, $V_2 = -1V$ and $V_3 = +3V$. (05 Mark
		(05 Maris
		OR
4	a.	Design a base bias circuit to have $V_{CE} = 5V I_C = 5mA$. The supply voltage is 15V and
		transistor has $h_{fe} = 100$. (07 Mark
	b.	Derive an expression for the voltage gain of inverting and Non-inverting amplifier.
		(08 Mark
	C.	Analyse the circuit of an op-amp as an integrator. (05 Mark
		Module 2
5	a.	Interpret the following: Module-3
J	u.	i) $(48350)_{10} = ()_{16} = ()_{8}$
		ii) $(FACE)_{16} = (\ \ \ \ \)_2 \stackrel{?}{=} (\ \ \)_8$

(06 Marks)

iii) (847. 951)₁₀ = ()₈.
b. Write the logical symbol, truth table and Boolean expressions of all the logic gates : (AND, OR, NOT, NOR, NAND, EX-OR, EX-NOR).
c. Realize EX -OR gate using NAND gates only. (09 Marks)

(05 Marks)

		OR OR	
		Which are the universal gates? Realize basic gates using universal gates?	(07 Marks)
6	a.	Design a full adder using two half adder. Derive the necessary expressions.	(08 Marks)
	b.	Perform the subtraction using 2's complement method:	
	c.	i) $(11010)_2 - (10000)_2$	
		ii) $(11)_{10} - (15)_{10}$.	(05 Marks)
		11) (11)10 (13)10.	
		Module-4	
7	a.	With diagram and truth table explain NAND gate latch.	(06 Marks)
	b.	Explain the operation of 8051 microcontroller with neat block diagram. Mention	n the salient
		features	(10 Marks)
	c.	Distinguish between flip-flop and latch. List out the applications of flip-flop.	(04 Marks)
		OR	(07 Mandas)
8	a.	Explain the operation of clocked RS flip-flop.	(07 Marks)
	b.	With a neat block diagram, explain microcontroller based stepper motor control s	(07 Marks)
		The standard NOP Cote Letch	(06 Marks)
	C.	With a diagram and truth table, explain NOR Gate Latch.	(00 1/14/145)
		Module-5	
0		What is modulation? Explain the need for modulation.	(04 Marks)
9	a.	Derive the expression for frequency modulation with a neat waveforms.	(10 Marks)
	b.	Explain the piezoelectric and photo electric transducers.	(06 Marks)
	C.	Explain the piezoelectric and photo electric transactors.	
		OR	
-10	a.	Discuss the comparison between AM and FM modulation.	(06 Marks)
10	b.	Explain the construction and principle of operation of LVDT.	(07 Marks)
	c.	A carrier of 1MHz with 400 Watt of its power is amplitude modulated with	a sinusoidal
	•	signal of 2500 Hz. The depth of modulation 75%. Calculate the side band free	quencies, the
		band width, the power in the side bands and the total power in the modulated wa	ve.
	P		(07 Marks)

			•
		sgargal wit state 💙 may gree and autobate at the final flooring blooger, e.t. eleter	
		2 of 2	
		2 of 2	
		Co	
		A P	
	1		